Effect of the modifier on the thermophysical properties of fireproof ethylene-vinyl acetate copolymer composition materials

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.150294

Keywords:

composite materials, effect of modifier, ethylene-vinyl acetate copolymer, fillers-flame retardants, thermophysical properties

Abstract

The object of research is the thermophysical processes of fireproof composite materials: ethylene-vinyl acetate copolymer, which contain fire retardant fillers and a modifier. In order to ensure the incombustibility performance, polymer compositions have a high degree of filling up to 60 % by weight. A copolymer of ethylene with vinyl acetate is used as a polymer matrix. Inorganic fillers-flame retardants are aluminum oxide trihydrate with an average particle diameter of 1.5 μm and 3.0 μm, magnesium oxide dihydrate with an average particle diameter of 3.0 μm and 3.7 μm and hydromagnesite with an average particle diameter of 1.4 μm. One of the most problematic places is the process of processing such compositions.

Aminosilane is used as a modifier. Using the method of thermogravimetric analysis and TGA/DSC differential scanning calorimetry, the melting and decomposition temperatures, the crystallinity degree, the specific heat, and the mass loss are determined.

The results show that the melting points decrease with increasing modifier content for all samples. A significant decrease in the melting point is observed when using fillers with a large average particle diameter. The temperature of the decomposition beginning increases for all polymer compositions in which the modifier is introduced. The crystallinity degree increases with increasing content of the polymer composition modifier. The specific heat capacity of all polymer compositions increases with an increase in the amount of modifier. This is due to the influence of fillers-flame retardants and modifier on the formation of the structure of polymer compositions.

This makes it possible to reduce the melting point by 1.2–16.2 degrees, depending on the chemical composition and dispersion of the flame retardant fillers in the presence of a modifier. The crystallinity degree increases and the specific heat capacity increases with an increase in the modifier content. The decomposition beginning temperature of polymer compositions increases significantly from 20 to 45 degrees.

The results will be useful in the development of fireproof formulations of polymer compositions for cable products, taking into account their thermal characteristics.

Author Biographies

Olena Chulieieva, PJSC «Yuzhcable Works», 7, Avtohenna str., Kharkiv, Ukraine, 61099

PhD, Director of the Center

Scientific and Technical Center

Volodymyr Zolotaryov, PJSC «Yuzhcable Works», 7, Avtohenna str., Kharkiv, Ukraine, 61099

Doctor of Technical Sciences, Professor, General Director

References

  1. Peshkov, I. B. (2013). Materialy kabel'nogo proizvodstva. Moscow: Mashinostroenie, 456.
  2. Chulieieva, O. (2017). Development of directed regulation of rheological properties of fire retardant composite materials of ethylene vinyl acetate copolymer. Technology Audit and Production Reserves, 2 (1 (40)), 25–31. doi: http://doi.org/10.15587/2312-8372.2018.129699
  3. Tirelli, D. (2013). Antipireny dlya kompozitov. The Chemical Journal, 1-2, 42–45.
  4. Obzor mineral'nykh antipirenov-gidroksidov dlya bezgalogennykh kabel'nykh kompozitsiy (2009). Kabel'-news, 8, 41–43.
  5. Ableev, R. (2009). Aktual’nye problemy v razrabotke i proizvodstve
  6. negoryuchikh polimernykh kompaundov dlya kabel’noy industrii.
  7. Kabel’-news, 6-7, 64–69.
  8. Cárdenas, M. A., García-López, D., Gobernado-Mitre, I., Merino, J. C., Pastor, J. M., Martínez, J. de D. et. al. (2008). Mechanical and fire retardant properties of EVA/clay/ATH nanocomposites – Effect of particle size and surface treatment of ATH filler. Polymer Degradation and Stability, 93 (11), 2032–2037. doi: http://doi.org/10.1016/j.polymdegradstab.2008.02.015
  9. Laoutid, F., Lorgouilloux, M., Lesueur, D., Bonnaud, L., Dubois, P. (2013). Calcium-based hydrated minerals: Promising halogen-free flame retardant and fire resistant additives for polyethylene and ethylene vinyl acetate copolymers. Polymer Degradation and Stability, 98 (9), 1617–1625. doi: http://doi.org/10.1016/j.polymdegradstab.2013.06.020
  10. Lujan-Acosta, R., Sánchez-Valdes, S., Ramírez-Vargas, E., Ramos-DeValle, L. F., Espinoza-Martinez, A. B., Rodriguez-Fernandez, O. S. et. al. (2014). Effect of Amino alcohol functionalized polyethylene as compatibilizer for LDPE/EVA/clay/flame-retardant nanocomposites. Materials Chemistry and Physics, 146 (3), 437–445. doi: http://doi.org/10.1016/j.matchemphys.2014.03.050
  11. Formosa, J., Chimenos, J. M., Lacasta, A. M., Haurie, L. (2011). Thermal study of low-grade magnesium hydroxide used as fire retardant and in passive fire protection. Thermochimica Acta, 515 (1-2), 43–50. doi: http://doi.org/10.1016/j.tca.2010.12.018
  12. Sonnier, R., Viretto, A., Dumazert, L., Longerey, M., Buonomo, S., Gallard, B. et. al. (2016). Fire retardant benefits of combining aluminum hydroxide and silica in ethylene-vinyl acetate copolymer (EVA). Polymer Degradation and Stability, 128, 228–236. doi: http://doi.org/10.1016/j.polymdegradstab.2016.03.030
  13. Chang, M.-K., Hwang, S.-S., Liu, S.-P. (2014). Flame retardancy and thermal stability of ethylene-vinyl acetate copolymer nanocomposites with alumina trihydrate and montmorillonite. Journal of Industrial and Engineering Chemistry, 20 (4), 1596–1601. doi: http://doi.org/10.1016/j.jiec.2013.08.004
  14. Jeencham, R., Suppakarn, N., Jarukumjorn, K. (2014). Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Composites Part B: Engineering, 56, 249–253. doi: http://doi.org/10.1016/j.compositesb.2013.08.012
  15. Valadez-Gonzalez, A., Cervantes-Uc, J., Olayo, R., Herrera-Franco, P. (1999). Chemical modification of henequén fibers with an organosilane coupling agent. Composites Part B: Engineering, 30 (3), 321–331. doi: http://doi.org/10.1016/s1359-8368(98)00055-9
  16. Jesionowski, T., Pokora, M., Tylus, W., Dec, A., Krysztafkiewicz, A. (2003). Effect of N-2-(aminoethyl)-3-aminopropyltrimethoxysilane surface modification and C.I. Acid Red 18 dye adsorption on the physicochemical properties of silica precipitated in an emulsion route, used as a pigment and a filler in acrylic paints. Dyes and Pigments, 57 (1), 29–41. doi: http://doi.org/10.1016/s0143-7208(03)00006-8
  17. Juvaste, H., Iiskola, E. I., Pakkanen, T. T. (1999). Aminosilane as a coupling agent for cyclopentadienyl ligands on silica. Journal of Organometallic Chemistry, 587 (1), 38–45. doi: http://doi.org/10.1016/s0022-328x(99)00264-8
  18. STARe thermal analysis system, operating instructions to the TGA/DSC1 (2007). Switzerland, Mettler Toledo AG.
  19. Makarova, N. V., Trofimets, V. Ya. (2002). Statistika v Excel. Moscow: Finansy i statistika, 368.

Published

2018-05-31

How to Cite

Chulieieva, O., & Zolotaryov, V. (2018). Effect of the modifier on the thermophysical properties of fireproof ethylene-vinyl acetate copolymer composition materials. Technology Audit and Production Reserves, 6(1(44), 23–28. https://doi.org/10.15587/2312-8372.2018.150294

Issue

Section

Materials Science: Original Research